Chapter 3: Atomic Structure

Scientists

Democritus- Matter composed of atoms (indivisible) (~450B.C.) Lavoisier – conservation of mass Proust – law of constant composition Dalton – modern atomic theory (KNOW the 4 postulates)

Dalton's Atomic Theory

 All matter is composed of atoms
 Atoms of different elements are different, atoms of the same element are identical

Matter is conserved

A given compound has the same elements in the same ratio

...more scientists

- Faraday Atoms contain charged particles
- Thomson atoms are divisible, he discovered electrons
- Millikan found the charge and mass of electrons

...still more scientists

- Becquerel –discovered radioactivity
 Marie Curie – isolated radioactive elements.
 Rutherford – suggested the
 - existence of the nucleus and neutrons

Rutherford

Close to the modern atom

- Electrons circling around the nucleus like planets around the sun.
- A lot of empty space

Modern Atomic Theory

Atoms are composed of three fundamental particles

–Protons (p⁺)
–Neutrons (n^o)
–Electrons (e⁻)

Modern atomic theory (continued)

The nucleus is made of protons and neutrons...so it is positively charged

- Electrons orbit the nucleus in an electron cloud...this is negatively charged
- Overall the atom is **neutral**...

 $-the #p^+ = #e^-$

Particle	Location	Charge	Mass (g)	Mass (amu)
Proton	Inside Nucleus	+	1.673 x 10 ⁻²⁴	~ 1
Neutron	Inside Nucleus	0	1.675 x 10 ⁻²⁴	~1
Electron	Outside nucleus	_	9.109 x 10 ⁻²⁸	~0

Atomic Number

Atoms identity comes from the number of protons in the nucleus
 In a chemical reaction, atoms gain/lose electrons and become an ion.

Ion is a charged particle. This can be + or – depending on whether an electron is gained or lost. Calculating charges and writing ions. If an electron is gained, the charge becomes **negative**. If an electron is lost, the charge becomes positive. Charge = # protons - # electrons Ex. Magnesium Charge = #of protons - #of electrons 2 + = 1210 Ion is written as Mg⁺²

Isotopes

- Isotopes atoms of the same element (same #p⁺) but different number of neutrons.
- Most elements have isotopes.
- Isotopes of elements are almost indistinguishable (they exhibit the same properties)

Nuclear symbols ... used to show number of p⁺, n⁰, and e⁻ Mass number = $p^+ + n^0$ The mass number is used to differentiate between isotopes. ■ Mass number \rightarrow 37 (mass number) Cl or Cl - 37 • Atomic number $\rightarrow 17$

More Examples

Even MORE examples

	Ions	
56	16	27
Fe ⁺²	O ²⁻	Al +3
26	8	13
p+	p+	p+
n ⁰	n ⁰	n ⁰
e	e	e⁻

Average Atomic Mass

- Atomic Mass (atomic weight) = average atomic mass of all existing isotopes
- Measured in amu's

AMU = atomic mass unit = 1/12 the weight of a carbon-12 atom Calculation of average atomic mass Weighted average of all existing isotopes [(Percent abundance/100) * isotope mass] [(Percent abundance/100) * isotope mass]

+ [(Percent abundance/100) * isotope mass] Average Atomic Mass

Lithium - 6 $(7.42\%) = [6 \times (7.42/100)] = 0.4452$ Lithium - 7 $(92.58\%) = [7 \times (92.58/100)] = + 6.4806$

6.9258 amu

[20*(90.92/100)] =[21*(0.26/100)] \equiv [22*(8.82/100)] =

18.18 0.055 + <u>1.94</u> 20.18 amu

Neon -21 (0.26%) (8.82%) Neon -22

(90.92%) Neon – 20

You try it!

Changes in the nucleus

- Nuclear Reactions Change the composition of the nucleus.
- Atoms undergo nuclear decay and produce new elements!

What governs nuclear stability? • strong nuclear force force which holds the nucleus together • part of reason is the # of p⁺ and # n° "belt of stability" – as atomic number increases, you need more neutrons to keep the atom stable

• All atoms with an atomic number greater than 83 are radioactive

 Radioactive isotopes spontaneously undergo radioactive decay

Radioactive Decay

Release of radiation to become more stable

Types of radiation

- Alpha:
 High-energy alpha particles
 -2p⁺ and 2 n⁰.
 -Weak...stopped by paper or clothing
 -Mass number 4
 - $\begin{array}{cccc} \mathbf{4} & \mathbf{4} \\ \mathbf{-Symbol} & \alpha & \mathbf{or} & \mathbf{He} \end{array}$
 - 2 2

•Beta: -High speed electrons -Mass number = 0 -Can pass through clothing, some damage to skin - symbols β or e

•Gamma:

-symbol

- -Most dangerous
- -Consists of radiation waves
- -Only stopped by heavy dense material like lead/concrete

0

Writing nuclear equations:

Mass Number Chemical symbol Atomic Number • Example: 14 6

Alpha decay....

- When a nucleus emits an alpha particle, the mass decreases by 4 amu's and the atomic number decreases by 2 amu's.

Beta decay...

- When a nucleus emits a beta particle, the mass of the atom is practically unchanged, but the atomic number increases by one unit.

Gamma decay...

 When a nucleus emits à gamma ray, both the atomic number and atomic mass remain the same. 113 113 $In \rightarrow$ **49 49**

Application of Nuclear Chemistry

- Use of half life + Radioactive Dating
- Nuclear Bombardment Reactions
- Create radioactive isotopes used in medicine
- Power Generation
- Fission Limerick Generating Plant
- Fusion "research"

- Radioisotope an isotope that is radioactive.
- Half-life The amount of time it takes for ½ of a sample of a radioactive isotope to decay. (1/2 of the radioactive atoms)
- Ex. Sr 90 = 28.8 yrs

Radiocarbon Dating

- uses carbon-14
- carbon-14 is radioactive
- half-life is 5370 yrs
- Produced naturally from reaction between N-14 and cosmic rays
- Living things...rate of production carbon-14 = rate of decay of carbon-14